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Scattering by Discontinuities of Surface Waves on a Unidirectionally

Conducting Screen
by
S. R. Seshadri

Harvard University

Ca .bridge, Massachusetts

Abstract

It is shown that a plane screen consisting of closely-spaced
parallel wires which are separated from one another and whichare
such that the radius of the wires and the spacing between them are
small in comparison to wavelength, can supporta surface wave, the
spread of whose field components depends only on the angle which
the direction of propagation makes with the direction of the wires.
The problem of radiation from a discontinuity in such a semi-in -
finite waveguide is studied for the following three types of discon -
tinuities i) when it terminates in empty space, 1ii) when it
terminates at another such semi-infinite waveguide having differ-
ent propagation characteristics, and iii) when it terminates at
a perfectly conducting half-plane. In each case, the power reflec -
tion coefficient, where applicable the power transmission coef -
ficient, the loss of power due to radiation and its angular distribu -
tion are evaluated. The motivation for this investigation is briéﬂy

indicated.
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Introduction

The propagation of electromagnetic waves in waveguides with anisotropic
walls has in recent years assumed practical importance in long-distance wave-
guide communication.[ 1,2] One such waveguide which is commonly used is in
the form of a tightly-wound helix, in which the adjacent turns are separated from
each other. In this connection it is of interest to investigate theoretically the ef-
fect on the propagation of guided waves introduced by the junction formed by either
two different anisotropic (helical) waveguides or a helical waveguide and a circular
waveguide having perfectly conducting walls. Also, helical waveguides of finite
length, known commonly as helical antennas are widely used to obtain radiation
along the axis of the helix. In view of this practical application the investigation
of radiation from the open end of a helical waveguide is also of interest.

As a first step in the understanding of the more difficult problem of radia-
tion from discontinuities in a helical waveguide, it is advantageous to treat the
limiting case in which the radius of the helix becomes infinite. For the limiting
case, the helical waveguide degenerates into a plane screen which is conducting
only in the direction of the wires composing it and insulating in the perpendicular
direction. In this paper, a treatment is given for the problem of radiation from
discontinuities in such a planar waveguide consisting of parallel wires which are
separated from each other and which are such that the radius of the wires and the
spacing between them are quite small compared to wavelength.

In the first section, it is shown that an anisotropic planar surface can sup-
port a guided wave which is attenuated exponentially in the direction normal to

the surface. The spread of the field in this surface waveguide decreases as the
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angle between the direction of propagation and the direction of the wires becomes
close to% . Appropriate boundary conditions applicable at thg surface of such a

unidirectionally conducting screen have been given recently by Karp. [3] Radia-

tion from the open end of such a semi-infinite surface waveguide is treated in the
next section. Expressions for the power reflection coefficient and the radiation

pattern are obtained.

In the third section, the electromagnetic fields produced at the junction of
two semi-infinite surface waveguides are examined; the wires composing the two
surface waveguides are assumed to be in different directions. It is important to
note that by a suitable formulation this problem is reduced to the question of a
solution of a functional equation similar to the one studied previously by Kay. [4]

A treatment is given in the final section for the problem of radiation from
the junction formed by a semi-infinite surface waveguide and a perfectly conduc-
ting half-plane. For this case, the power reflection coefficient and the radiation

pattern are fourd to be the same as for the open-ended waveguide.
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Surface Wave on a Unidirectionally Conducting Screen

Consider a unidirectionally conducting screen occupying the region
-ow¢xS$om, -0y <ow,and z =0, where x, y, z form a right-handed rec -
tangular coordinate system. Also set up two rotated coordinate systems (§ 1’ nl,z)
and (& PPy z) where

= +vysi
EI,Z X cos °1,2 Yy nal'z

”-1,2 = -x aina,l,Z + Yy cos °‘1,2

z =z qul,z <%. (1)

The screen is assumed to be conducting in the direction El only. The electro-

magnetic fields E , H satisfy the time harmonic Maxwell's equations

VvxE = ik H
vx H = -ikE (2)
in the region exterior to the screen. The harmonic time dependence ceT10t 4o

implied for all the field components. On the screen the following boundary con-

ditions are satisfied

E (x,y,0) = 0 (3)
£
+ -
[H (x,y) ] =H (x,y,0') -H (x,y,0 ) = 0 (4)
+ -
E_ (x) =E (x,y,0)-E_ (x,y50) =0 (5)
[ n, ¥ ] n 7 ny Y
Let the mode for which H_, =0 be considered. All the field components are

£

conveniently derived using the electric vector potential A , which, since HE =0
1
is entirely in the £ 1 direction.The geometry of the screen itself is independent of

the y-coordinate, hence, it is reasonable to look for the field components which
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do not vary with y. Because of (1), it is seen that

3 - 2 O - _ sina —9—
3§1 = cos a; v a'ﬂl sinay = . (6)
Also since
A
B =9x¢ 1 A (7)
_ 1 A
E = -pvxvx§ A, (8)
it results that
H =0
£}
. o
HT]l = SZ A (x,z)
H = sina, <= A(x,z)
z 1 ax !
E - i (k2 + cos2 a az ) A(x,z)
gl k 1 52 !
X
E =-{Z cos a, sin a9 —a; A(x,z)
i 3%
Ez = -E cos 0.1 ax—az— A(x,z) . (9)

In view of (9), boundary condition (4) is automatically satisfied. Boundary con-
dition (5) will be satisfied if

A(x,z) = A(x,-z) . (10)
For a #% , boundary condition (3) will be satisfied if A(x,z) has the form
e* ik sec a) x . This shows immediately that a unidirectionally conducting screen

supports a wave traveling in the x-direction with a phase velocity o =c cos a

which is less than ¢ , the velocity in free space. For a wave traveling in the
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direction of the negative x-axis, since

2 2

2y + 25 +k%) Axz) = 0 (11)
oX QAZ
e—k tan a, z zs 0
A(x,z) = AO e-1k sec a; x
ektana z . (12)

It is to be noted that the field components decay exponentially as Iz |increa.ses.
This surface wave is either 'loosely bound' or 'tightly bound to the screen, de-
pending on a; being small or large; there is no surface wave for a, = 0, % . Using
(9)and (12), the field components of the surface wave are written down explicitly
as follows :

H_ (x,2) =0

31
H (x,2) = ; e-ik sec a) x e-;- k tan a) z
. - ktana, 2
H  (x,2) = ie'lk sec a; X e+ 1
E (x,z) = + iH (x,2) ) (13)

In (13), the upper sign is for z > 0 and the lower sign z < 0 . An arbitrary

value is used for the constant A0 in (13). Notice further that

H§1;n1 (x,z) ='H§11n1 (xr"z')
Egl,ﬁ1 (x,z) = Egl,ﬂl (x,-2)
HZ(X,Z) = HZ (X,—Z)

E (x,z) =-E_(x,-2) . (14)
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The relations (14) result on account of the symmetry about the plane z =0 . It
is to be noticed that in view of (14), the equivalent to boundary condition (4) on

the screen is

Hy (x,y,0) = 0 . (15)
1

It is now desired to examine the effect of terminating the surface waveguide
(0 ¢ x < o) at x = 0, on the surface wave given by (13) when it is incident from
x = 0. On account of the symmetry relations (14), it is enough to consider the

region z > 0 .

Radiation from the Open End of the Surface Waveguide

No surface wave can be supported in the region x « 0 and therefore, the
incident surface wave will be partly reflected back as a surface wave and partly
converted into a radiation field. The current on the screen,and therefore the vector
potential,are both only in the & direction and g, component of H is not generated
by the discontinuity. It is assumed thatk has a small positive imaginary part e ,
which is set equal to zero inthe final formulas. All the field components may be
obtained from the vector potential A(x,z) which is related to the electric current

density i(x} by the formula

oo
A(x,z) = A(x,-z) = % g i(x') Ho(l) [k ./(x-x') +zz] dx' z>0 . (16)
0

By making use of the following representations

. ifx =
E§ (x,z) = > Se Egl(c,z) d¢ (17a)

1 ™
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i(x) = 5 S‘ ¢ C* T(e) dc (17b)
Alx,z) = -211; g ¢ * X (¢,2) d¢ , (17¢)

and (9), it follows for z = 0 that

E, (00 - Hk? - cos?a; (A K (,0) - (18)

Since from (16)

2 ei.gz

X(gz)=3TI(Q) : (19)
Jk7-¢
where Imé& = Im Jk -Cz‘ >0, (18) reduces to
E',g. I(C ,0) = -.-?1.12 <:oszo.1 [(k sec al)z-gz] 1) . (20)

k™-¢

It is first necessary to know the regions of regularity of the various

transforms in (20). From (13), the incident total current density is obtained as
.1 _ -ik sec a) x
i(x) = 2 e . (21)
Also as x .- o0, i(x) should obviously be of the form

i(x) = Z[ehlk sec a1x+Re1k sec alx] , (22)

where the first term is the incident current density and R is the reflection coef-
ficient at x = 0. It results from (22) that [ (k sec al)z - gz] T(¢) is regular in

the lower half-plane (Im ¢ < ¢). Also ES‘ (€,0) is regular in the upper half-plane
1

(Im ¢ >-¢). In addition, the transform of the Hankel function is regular
k™ -¢

and has no zero in the strip lIm g| < ¢,and therefore, the Wiener-Hopf procedure
can be applied to solve (20). Rewriting (20) as

[ (k sec a.l)2 - CZ_] T(C) 1 . -2k sec2 a; [k+¢ E

(¢,0) , (23)
Jk=¢ 1

3
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it is seen that the right-hand side of (23) is regular in the upper half-plane and the
left-hand side is regular in the lower half-plane. Both are regular in the strip
|Im CI < ¢ and may be considered as analytic continuations of each other; together
they define an integral function in the finite {-plane. By considering the asympto -
tic behavior of either side of (23) as { - o0, the integral function defined by (23)

may be shown to be a constant. By applying the Meixner corner condition, it is

1/2

clear that the singularity of E_ (x,0) at x = 0 is of the form x~ and hence,

g
-1/2 !

E_ (¢.0)~¢ as |¢|- . From the right-hand side of (23), the integral
1

g

function is seen to be a constant. Therefore, it is clear from (23) that I(¢) ~ g-3
1/2

/2

as ( - o0, and hence, it follows that i(x) vanishes at x = 0 as x This is in
accordance with the Meixner corner condition and the requirement that the cur-
rent at the end of the wires composing the screen should vanish.
From (23) and (17b), it results that
i(x) = 21_ S D Jk-¢ e'C* ac (24)
1r 2 2
[(k sec a))™- ¢ "]

where D is a constant to be determined and the integration contour passes below
both the poles { =tk sec a . By closing the contour in the lower half-plane, it
results that i(x) = 0 for x < 0, as it should. By closing it in the upper half-plane
the value of i(x) for x > 0 can be evaluated. In particular, since the incident
current density is contributed by the pole (= -k sec a , it may be derived from (24)
and (21) that

41 kl/2 sec a;
(1 + sec al) /e

D (25)

Since the pole ¢ = k sec a, gives rise to the reflected current density, it is ob -
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tained from (22), (23), and (25) that
3
l-sec a, 2
R = - . (26)
T+sec a;

The magnitude of the reflection coefficient monotonically increases as a, increases.

With the help of (17c), (19), and (24), it follows that

Atx,z) = iD icx+igz 1 dr (27)
= I S © J"ETC(RZ seczul-cT) ¢

It is possible to express A(x,z) in a closed form in terms of Fresnel integrals.
However, since the interest is only in finding the radiation pattern, the expres-
sion for A(x,z) , valid in the far zone, will be found. Introduce the polar co -
ordinates

= p cos 0 z = p 8in @ (0£0 &<m) . (28)

The path of integration in (27) is deformed by setting
€= k sin 7 E = k cos 7T . (29)

With (28) and (29), (27) reduces to

A(p.0) = iD SJ[ - 8in ikp sin (O'T)d‘r. (30)

4n k377 (sec a - amz'r)

For kp > 1, (30) is evaluated by the method of stationary phase to yield

1/2

(sec a - cosz Q)

sec a 2 1/2

i(k p -%) (1+cos 0)
Tkop €

Alp,0) = (31)

k(l+sec (11)1]Z
Since A(p,9) is in £, direction, it follows from (1) and (28) that

- A
A(p,0) = [ —6 cos @ cos a; + 0 sin 0@ sin ay +§r sin °1] A(p,9) (32)
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With the help of (32), the components of the field quantities are readily computed

to yield
2 2 1 (1L + cos 9)
H = 33
I l kmwp (l1+ sec—&? (seczal-COSZO) (33)
Hence, the total power radiated per unit width of the screen is
™
: 2 4 cos2 a,
Pe =§ |H|“ pdo = : : (34)
k tan 0,1(1+cos al)
-m

It is to be noted that (34) gives the power radiated in both the half-spaces z 5 0.
From (13), the total incident power flowing across unit width in the direction of

propagation is obtained as

oo [0}
2cosa
i 2 - !
L i - 2ktana,z _ (35)
Pi = 2 S |H | cos a; dz = 4 cos a S e 1 dz'_—ktano,l‘ .
o o

The total power carried by the reflected surface wave per unit width of the

screen is obtained using (26) as follows :

2 2 cos a; ‘l-cos oy ‘
P, =P IR|™ = ktana, T+ cos a, |’ (36)
Using (34) and (36), it results that
2 cos a4y
PR + Pr * Fona T = Pi . (37)

Hence, it is seen that the total incident power per unit width of the screen is equal
to the sum of the power carried by the reflected surface wave and the power con -
verted into the radiation field.

The radiation pattern as given in (33) is plotted in Fig. 1 for four dif -

ferent values of a; . It is seen to consist of a single lobe with its null in the di -
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rection of the surface waveguide and its maximum in the direction of the geo -
metrical extension of the waveguide. Besides,the beam width is seen to reduce
as a; is decreased. Also, it is obvious from (34)and (35) that the proportion of
the incident power that is radiated, monotonically decreases, at first slowly and
then more rapidly as a; is increased. If the general features of radiation of the
limiting case are also true for the helica' guide, then it follows that as the pitch
is increased, both the reflection at the open end and the beam width of the pattern

are reduced for the corresponding mode of excitation.

Radiation from Discontinuity Formed by the Junction of Two Surface Waveguides

Another unidirectionally conducting semi-infinite screen is now considered
to occupy the region (-0 < x< 0 ,-0<y< ©, z=0) and is joined along x = 0
to the first surface waveguide (0 { x{ @, - <y o0,z =0). The second semi-
infinite screen (-0 < x £ 0) is assumed to be conducting in the direction § 2 and
insulating in the perpendicular direction n, where £ a1 My are given in (1) . As
before, the surface wave given by (13) is assumed to be incident from x = 0. At
the discontinuity x = 0, a part of the incident surface wave is reflected, another
part transmitted as a surface wave and the remaining energy in the incident sur-
face wave is converted into a radiation field.

A general solution of Maxwell's equations (2) can be obtained [5] as the

sum of two independent solutions E1 and EZ such that

Type 1 E = -iH

1 1

Type II E, iH (38)

1
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From (3), (4), (5), and (15), the boundary conditions for z = 0 become
A A
51 'El = 0 forx> 0 §Z'E1=0 forx < 0

A A
Elloﬁ2=0£orx> 0; gz-ﬁz=o forx< 0 . (39)
For the incident field it is seen that
gl = -id forz> 0
i . | .
E = iH forz < 0 . (40)

Since E; and E, are geparated in the boundary conditions and since the fields
preserve the symmetry of the wavetype [ namely E:1 or EZ] of the incident wave,
it follows that for the scattered fields also

E®* = -iH®

forz> 0

E* = iH®

forz« 0 . (41)
Again the symmetry about z = 0 [ 14] permits tﬁe detailed consideration of only
the region z > 0.

The incident field as well as the geometry of the problem is independent
of the y-coordinate and hence, all the components of the scattered field likewise
are independent of the y-coordinate, and are therefore derived conveniently using
the y-component of the electric and magnetic fields. In view of (41), the entire
scattered fields may be derived from the y-component of the magnetic field only,

using the following relations which are easily derived from‘(Z) .

E® (x8) = 1p & H.* (x,5)

E; (x,2) "TIE -& Hy' (%,2)
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H) (x,8) = 11; = Hy' (x,2)
H,"xs) = g & H® (xs) (42)

The sum of the incident and the scattered fields, denoted by the superscripts i

and s respectively is the total field. Since from (2)

2 2
2 ] -
[.alxz + -af-z_+ k] HJ (x,3) = 0, (43)

H; (x,2) may be assumed as follows :

H; (x,z2) = 21; S f(c) eiCx+i§l a¢ (44)

where Img = Im sz -gz > 0.

In view of (13) and (15), the boundary conditions [(3), (4), (5)] on the screens

become
H® (x,0) = 0 for x>0 (45a)
§1
H® (x,0) = -H! (x,0) for x <0 (45b)
) §2

Using (1), (42), and (44), it is obtained that

; iCx+E
H;Lz(x.z) = = S [ 1cos “1.2.5""‘“‘1,2] f(c)GCx 'dC . (46)

From (46) and (45a), it is seen that
[ icosa, i + sin 41] £(¢) = u+(C) (47)

where u+(c) is regular in the upper half-plane Im { > -¢ . For xx 0, it is ob-
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tained from (46) and (13) that \

H (x,2) = H° (x,z)+I—Ii (x,2)

£, £2 £2

= = S‘ [icosa, §+ sin a,] f(c)eicx+i§zdc

) sin(az-o,l) e,-1k seca;x- ktan a2, (48)

Rewriting (48) for z = 0 as,

. . isin(a,-a )—_Y .
H;Z (x,0) + H;Z(x,O) = 2—1“- 5[7 i cos a, % + sin az} f(¢) - .C.Tk_ge_c.z-zl—l-/‘ eledg

(49)
and using (45b), it may be argued that
£ i sin (uz-al) _

[ icos a, g *sin °2] £(¢) - CTFsecq, = L (¢) (50)
where L™ (¢) is regular in the lower half-plane Im{ <e . Eliminating £({)
from (47) and (50), it results that

cosa K, (¢) isin(a -a,)
+ 2 B2 27%) -
w - (C) cos a; Kligs- ¢ +kseca =L (C) (51)
where,
ktana O
K, ,(¢) = [1- it | (52)
' /_7_7_ !
¢ -k ]
The transform relation (51) is valid in the strip [Im¢ | < € . The zeros of

2 (¢) lie outside this strip. The standard Wiener-Hopf procedure requires the

splitting up of the functions in (52) in the form

K, " (¢) X,"(¢)
Klg) = ——— & K0 = —=
K, (() K, (¢)

(53)
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where
e k tan a1, N
( 7 > log ‘1-—-—-——
+ 1 LVt - k
KT,Z (C) =exp ¢ - s ) . dt . (54)
- ie -
| -3 ‘

The + and - functions are regular and not zero in the upper and lower half-planes

respectively. Using (53) and rewriting (51) as

cosa, Kz+ (¢) i sin (,u2 - al) KZ- (-k sec al)

u(¢) cosa, KI+ () " (tkseca K,” (-k sec a,)
Lo K, () isin(ay-ay —Kz'(-k sec a) K, () B 55
K, "(¢) C+kseca, | K; (-ksecaq)) K, (¢)

it is seen that the left and the right sides are respectively regular in the upper

and the lower half-planes. Both sides are regular in the strip |Irn“g| < ¢ and
may be considered as analytic continuations of each other; together they define an
integral function in the finite { -plane. For ]CI - o, “+(C) is O(Q'a) where

6 > 0 in order that the integrals in (46) converge when z = 0, Also, it can be

shown that the factors K1,2+ (¢) are 0(1) as |g | - . Hence, by Liouville's theorem,
the integral function defined by (55) is zero. Equating the left side of (55) to zero,
an expression for u+(g) is obtained and using it in (47) and (44), it readily follows
that

(o}
ik sin (o.z-a.l) S‘ dc eiCx +ifz Ki(—k secul) K1+(g)

H® (x,2) = '
y 2 cos a, - [ktana, - ]CZ_kZ][ C+ksec ql].Kl-(-k sec ol)-K2+(g)

(56)

3|
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Expressions for the transmitted and reflected surface waves and the radiation
field may be obtained by evaluating (56) asymptotically for large x . From (54),
it follows that

-1

- L (57)
Ky 2 =€)

K 5" ()

and that K1 2 () is analytic except for the branch points ¥k and the logarithmic
1

singularities at +k sec a) 5 - The integrand in (54) is O(| > for large |t| , and
’ . . t]
hence, the integration contour [-oo + 12£ to +12€-] may be deformed into a new

one embracing the radial branch cut from k to co. This contour may be deformed
slightly at any point except possibly at { =k and ¢ = k sec 4 2 where the singu-
larities of the integrand occur. Hence, Kl,é (¢) is analytic and non-zero every-
where except possibly at k and k sec a - In view of (57), Kl,; (¢) is reguiar

and non-zero everywhere except at (= -k - k sec a 5 - It is evident from (52)

H

2 .2
C -k —ktan(ll,z

and (53) that

(58)

Ky, 20)

Since K1 ;(g) is regular and zero at (= k, it follows from (58) that K1 2 (¢) has a
branch poeint at = k. Again because K, ; (¢) is regular and non-zero at

{ =k seca Kl,é (¢) has a simple pole at { =k sec a2 In a similar fashion,

a2
it follows from (58) that Kl,; (¢) has a branch point at { = -k and a zero at

¢ = - k sec a 2 The integrand in (56) has,therefore, simple poles at {(=tksec ap
-k sec a, and branch points at { =tk . For x negative, (56) is evaluated by
deforming the contour to a line parallel to the original contour along the real axis

[Note that ¢ has been set equal to zero] slightly in the lower half-plane and inden-

ted above at the singularities of the integrand which occur at ¢ = -k, -k sec a; ,
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and -k sec a, . The poles at { = -k sec a),, give rise to the surface wave,
whereas the singularity at ¢ = -k gives the radiatiog field which decays as -FI‘T
for large x . Hence, for large x , only the surface-wave contributions dominate
and the evaluation of the contribution of (56) at the poles { = -k sec a1y [ Appen-
dix A] yields

- + 2
KZ (-k sec a'l) K1 (-k ““‘z’ tan it e-ik sec azx-ktanazz

+‘ cos o - -
K1 (-k sec al) KZ (-k sec uz) secaz(sec al-secuz)
(59)
From (13) and (1), it is obvious that
H; (x,2) =-cos a e-ik sec a;x -k tan a z ' (60)

Using (57), (59), and (60), the total transmitted surface wave for x < 0 is obtained
as

[Hy(x,z)]t = H; (x,z) + H;’ (x,2z)

- 2
_ cos ay KZ (-ksec 01)‘ 1 tan e, e-ik,sec azxﬂ;k‘tan a,2

) Kl'(k sec aZ)Kl-(-k seca,) Kz'(—k seca,) secajfsecaj-seca,)
(61)

Notice that the incident wave (60) completely nullifies the surface wave with the
value of k tan a for the attenuation factor in the z-direction. This should be the
case, since for x < 0, the screen is conducting in the § 2 direction and hence can
support only a surface wave with an attenuation factor k tan a, . It may be easily

shown [ Appendix A ] that as a, - a)

[Hy(x,2)], = -cosa e X 86Co X KIERAUZ gyl ) (62)
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This too should be the case, since the incident wave will then be transmitted as
it is without any disturbance.

For x> 0, (56) is evaluated by deforming the original contour along the
real axis to one parallel to it slightly in the upper half-plane and indented below
at the singularities (=k , and k seca; . Asbefore, the contribution of the in-
tegral (56) in the neighborhood of the singularity { = k gives rise to the radiation
field, which for large x is small compared to the surface wave term. Evaluating

the contribution of the integral near the pole gives the reflected surface wave

. T - -2
s‘m(o,z-al)tanu1 ; KZ (-k sec al) i

[Hy(xy)], = '

> - eikseca.lx -k tan a2 (63)
Zcosazsec a; _Kl (-k sec al)J

The radiation field is obtained by substituting (28) and (29) in (56) and
evaluating the resulting integral by the method of stationary phase for kp > 1.

The result when (52) is made use of is

(H(x.2] ) 1 ei(kP+ %) sin(az—o,l) K2 (-k sec (11)
yorlUR T cos a -

J2rkp 2 K, (-k sec 0.1)

sin 0 1 K, (kcos 8)

[tan a,+isin08] [ seca; - cos 0] K, (kcos 0) - (64)

The subscript R denotes the radiation field. Note that when a, =a;, the radia-
tion field goes to zero as it should.

It remains only to determine Kl, Z—(C) from (54) which has been evaluated
by Kay [4] in a different connection. In what follows only the expressions for

|K1 2_ ('C”Z will be needed and this is taken from Kay's paper :
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g / 2-k + ktana
' - K ¢ 12 |y
5 || € - ksecay,
2. P21/ ¢2x% _xtana,,
KI'Z = 1’2
‘ ¢ - -s:c a (<k - (65)
1’2

It is desired to find expressions for the power reflection coefficient R, the power
transmission coefficient T and a coefficient S for the radiated power which de-
note respectively the proportion of the incident power that is reflected, transmitted
and radiated. The total power in the reflected surface wave per unit width of

the guide is obtained from (63), (42) and (65) as

- % 2 sinz(o.-z-al)sin a)

(e 0]
Pr=2'ReS 2 ' E xH dz = (66)
o

k cosfuz(sec a,tsec ul)

The total power inthe transmitted surface wave is calculated from (61), (42) and

(65) as
oo
N —_ % 8 cos a, tan a
P, = ZRe S‘ QcEtth*dz= ! g - (67)
k(tano.2+ tan al)
o

The power radiated per unit width of the screen, per unit area in the direction 0 ‘

is obtained from (64), (42), and (28) for kp >> | as

sinz(o. -a,) sec a
2 1 1

-
SzReplERXHR Y cos2

£(9) (68)

a, (sec a, +sec al)

where the radiation pattern £(0) is given by

-1 J
() = sinZO { (ta.n2 a; + sin2 0) (sec a, - cos 9) (sec a, - cos 0) } . (69) |
i l
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Hence, the total radiated poweYt is

2m

4 cos o, sin oy 2
PR = 5 S p dO = > 5 | tan a, sec q) sec a,
‘ k tan” a (tan a,ttan 0.1)

(o]

2 tan2 a, tan2 Q)
- tana, tana, sec o + —5 - = . (70)

From (35), (66}, (67), and (70}, R, T, and S are obtained as

2
(sec a, - sec al)

R = sin" a 2 (71)
(tan a, +tan ul)
2
(tana‘2 - tan o.l)
T =1- 2 (72)
(tan a, +tan o.l)
and
2 cos® i
cos” a; 2 2
S = — '.tan a; sec a; seca, - tanaltanuZ sec”a,
[tana, +tana,]
2 )i
tanza.2 tanza1 }
+ > - — . (73)

It is easily verified that R + T +S = 1 as it should. The radiation pattern (69) is
plotted in Fig. (2) for several values of a; and ay - It is noticed that it has a

null in the plane of the waveguide. It is noticed that the beam width of the radia-
tion pattern increases as the maximum of the pattern moves away from the plane

of surface waveguide.

Radiation from Discontinuity Formed by the Junction of a Surface Waveguide and

a Perfectly Conducting Half-Plane

The surface waveguide in the region (-0:<x<0, o<y o,z =0) is

now assumed to be replaced by a perfectly conducting half-plane and the incident
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surface wave is the same as is given by (13). As before, the incident and hence,

the scattered fields are independent of the y-coordinate; therefore, it follows from

(2) that
s _ 1 3 s 8 _ 1l 3 8
By "X 52 Hy He * "X 32 Ey
s _ 1 2 8 8 _ 1 D 8
B "I = Hy H, = ® = Ey (74)
One of the boundary conditions on the screen is that
EE (x,0) = 0 -m< x< © . (75)

1

Since from (13), EEI (x,0) = 0, it is obvious that EE (x,z) = 0. Therefore,
1 1 ‘
from (1) and (74), it results that

cot ay 3

8
E (x2) = - p— 32 H; (x,2) . (76)

With the representation (44) for H; {x,z) , it is derived from (74), (76), and (1)

that

RIGE +ifz

§
s 1
Enl (X,Z) o S‘ - sinal f(C) dc (77)

cos a . .
H® (x,2) = — g ——— [KPsec?a; - ¢Ple() ' FIEZ g (78)
&1 k sina.1

The remaining boundary conditions on the screens are

Hgl

(x,0) = 0 for x>0 (79)

s
"
In view of (78) and (79), it results that

-ik sec a; x

E” (x,0) = -ie forx< 0 . '(80)

(k% sec?a - ¢ 8 = v () (81)
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where u'+ (¢) is regular in the upper half-plane Im ¢ > -¢ . In a similar man-

ner.from (77) and (80), it may be shown that

£ 1 -
k sin a, £(0) + (tkseca, = L (¢) ’ (82)
where L~ (¢) is regular in the lower half-plane Im¢ < ¢ . The transform re -

lations are regular in the strip IjIm ¢ ]( ¢ ,» 1 hence, the Wiener-Hopf procedure
may be applied. By substituting for f({) in (82) from (81) and rearranging the

resulting expression, it follows that

\/m— ‘1+(C) N 2 k sec (].1

I<s1rml (kseca1 +¢) ({+ k sec al) JE TR sec o

(k sec a - C)L_(C) 1 [ ksec o 2 k sec a
= + - e————— (83)
JEC Ctksecop | /k=F—  VK¥Ksecq,

By the arguments of the Wiener-Hopf procedure (83) may be shown to define an
integral function which is actually zero. Consequently from (83), (81), and (76}, it

is obtained that

Zkztanal d¢ elgx tifz

VK ¥Kseca, VEF((c® -k

5 (84)

8 1
Hy (X,Z) = 'ZF S

sec®a )
1
For x negative, (84) is evaluated by deforming the contour to a line parallel to the
original contour along the real axis, slightly in the lower half-plane and indented
above the singularities of the integrand which occur at (¢ = -k, -k sec a . The
singularity at ( = -k gives the radiation field which decays as T}‘T for large x
and hence, for large negative x, the significant contribution arises due to the pole

¢ = -kseca; . Evaluation of the residue of the integral at the pole ¢ = -kseca,
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gives

~-ik sec a;x -kta.nu.1 z

[H; (x,2z) ]t = cosa; e (85)

Notice that (85) is exactly cancelled by the incident field (60). This should be the
case,since a perfectly conducting half-plane cannot support a surface wave of the
type (85).

For x> 0, (84) is evaluated by deforming the original contour along the
real axis, to one parallel to it slightly in the upper half-plane and indented below
the singularity at { = k sec a; . This pole gives rise to the reflected surface wave

and its value is

18in a, eik sec a,x -k ta.na.1 z

[HY(x'z‘)]r = T+sec o,ll (86)

To obtain the radiation field,(28) and (29) are substituted in (84) and the re-
sulting integral is evaluated by the method of stationary phase for kp > 1. The

result is

1
1 . L
z ikp-z) tana, (1 + cos 0)2.

[Hx,2)]p = 50" e . (87)

(l+sec a'l)Uz (cosZO - sec al)
The total power in the reflected surface wave per unit width of the screen is easily

computed from (86), (74), and (76) as

o'}
A -t - % ;Sinal
P=2‘§ x'ExHr dz = . (88)
o

T T k(1 + sec 0.1) 2

The power radiated per unit width of the screen, per unit area in the direction
0 is obtained from (87), (74), (76), and (28) when kp > 1 as

*
S=Rep’ﬁ < # 2 1 1 +cos @

R R =1rkp (1+seca1) (secza (89)
‘ 1

-cos Q)
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Hence, the total radiated power is

2
cosa
_ 4 1 1
PR - S‘ S p do = k (T+seca)] tana, ) (90)
o .

It is to be noted that Pr + P_ is equal to Pi as given in (35) . The power reflec-

R
tion coefficient and the radiation pattern are noticed to be the same with or without

the terminating perfectly conducting half-plane.
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AEEendix A

Evaluation of the Transmitted Surface Wave

©
ik sin(az-ul) d¢e igx +igz KZ'(-k sec °’1) K1+(g)

[ktano,1 J¢ ][c+kseca1] K, (- -k seca;) K, (g)

s ;
Hy(x,z) T 2w cos a,

(Al)
Evaluation of the Residue at ( = -k sec ay
In view of (52) and (53)
+ + -
(¢) k0 K© i
- , . (A2
K, "(-kseca)) [ktana, - JT“Z'] K, (-kseca)) K, (()/TZ - k2
For (= -kseca,, [A 2] becomes equal to - ﬁ:?;; . Therefore, the contribution
of (Al) at the pole { = -ksec a, is
. ik“‘“(“z‘“l) KZ (-k sec o’l)‘ 1 -ikseca,x ~ktana, z
-2wi . X - rone | © )\ 1. (A3)
2. K + -k ) tana.1
™ cos a, 2 { seca,
Again from (52) and (53)
K, (-kseca,) tan a
z+ 1 _ 1 (Ad)
K, ( -ksec °‘1) tana; - tana,
With (A4), (A3) may be simplified to yield
cosa, e ik sec a;x -ktan a,z ' (A5)
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Evaluation of the Residue at { = -k sec a,

"From (52) and (53)

[,/gz-kz - ktana,] ) (A6)

¢“-k

K,"¢) =K,7(¢)

Hence, (Al) becomes

_ksin(u.z-o,l) d¢ elfxtifz

“27wi cosa
¢ . [ktanal-jgz-kz][g+kseca1]

H; (x,z) =

K, (-kseca;) K, *(¢) PR
X = - ?7-—-—— . (A7)
K, (-kseca;) K, (c)lVes -k -ktanaz]

The contribution of the integral (A7) at the simple pole (= -k sec a, is

k sin(az-ul)

- e-—iksecazx -ktanazz
-2mi |

Zwicosa, kz[tanal - tan 0,2] [ sec a, - sec °2.]

—

Kz-(-k secal) Kl+(-k secaz) k‘ztanzu.2

(A8)

Kl- (-ksecq)) KZ_(-k sec 0'2) kseca,
After some simplification (A8) becomes

- + 2 ]
KZ (-ksecal) Kl (—ksecaz) tan a2 -ikseco,zx-ktana21.§

cosay Kl_(-k seca,;) K‘Z-(~k sec °’2) sec az(secal-secaz)

(A9)
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It is obvious from (52) and (53) that

tan ay

K, " tkseca,) =K, (-kseca,) [1 ] . (A10)

B tana,

Also, it is easy to see that as a, tends to a,

tan 0.1

(sec a, - sec o,z) = - s‘inzo,1 seca; (1- ) . (All)

tan a,
Substituting (A10) and (All) in (A9) and passing to the limit, (A9) becomes

- cosa, e-1k5ec a;x -ktano,lz (A12)

as a, tends to a .

-J
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